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Direct numerical simulations are combined with two-way coupled Lagrangian point
particles to study the effect of Reynolds number on particle-turbulence interaction.
Turbulent planar Couette flow is simulated at a constant dispersed phase mass loading
of φm = 0.25 for particle Stokes numbers of StK = [O(1), O(10), O(100)] (based on
the Stokes time scale of the particle and the Kolmogorov time scale of the flow)
and bulk Reynolds numbers of Reb = [8100, 24000, 72000] (based on the plate
velocity difference and separation distance). Statistics of swirling strength |λci| are
used to evaluate the impact of particles on near-wall motions which are responsi-
ble for turbulent, wall-normal momentum transport. Instantaneously, the number of
high-strength swirling motions near the wall decreases significantly in the presence
of particles, and this trend is enhanced with increasing Reb. Conditional averages
are computed using linear stochastic estimation, providing the average structures
responsible for ejection events near the wall. These conditional eddies are weakened
substantially by the presence of the dispersed phase, and this effect is again enhanced
with increasing Reb. We propose a mechanism where particles, by interfering with
the hairpin regeneration process near the wall, can influence turbulent fluxes in a
way that increases with Reb despite only having direct interaction with scales on
the same order as their small physical size. At the same time, turbulent momentum
flux concentrated at higher wavenumbers with increasing Reb allows small particles
to be effective agents for altering turbulent transport. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4900583]

I. INTRODUCTION

Particle-turbulence interaction is a topic which has garnered continual attention for many years in
areas ranging from industrial pneumatic transport1 to geophysical flows2, 3 We approach this subject
broadly motivated by sea spray suspended within the marine atmospheric boundary layer, but for this
study we are specifically interested in the ability of a dispersed phase to alter turbulent momentum4, 5

and heat6 fluxes in wall-bounded flows. Richter and Sullivan4 demonstrate that inertial particles
damp Reynolds shear stresses in turbulent planar Couette flow, the magnitude of this reduction
depending on the particle Stokes number, and show that this is tightly linked to the modification
of near-wall vortical structures. The goal of the current study is to more thoroughly explore the
connection between the dispersed phase and near-wall coherent motions, and characterize how this
changes with increasing Reynolds number through an idealized set of simulations.

Many studies have investigated turbulence modification in particle-laden, wall-bounded
flows,7–10 but only a subset focus on modifications to the turbulent Reynolds stresses. Owen1

attempts to review and explain pressure drop measurements of various particle-laden pipe flow ex-
periments, and notes in passing that the measured skin friction in a pipe can appear to be reduced by
the dispersed phase, but that this simply represents a transition between momentum flux carried by
the air and that carried by the particles. Rashidi et al.11 show that large particles (1100 μm) increase
the frequency of wall ejection events in a turbulent boundary layer, consequently increasing the

1070-6631/2014/26(10)/103304/22/$30.00 C©2014 AIP Publishing LLC26, 103304-1
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turbulent wall-normal momentum flux, while small particles (120 μm) exhibit an opposite behavior,
reducing the number of ejections events and thus the Reynolds stresses. They note that each of these
effects is enhanced with increased particle concentration, and describe a physical process where
particles accumulate in low-speed streaks and are carried upwards with the low-speed fluid during
ejection events.

Righetti and Romano12 performed experiments in a horizontal, open-channel flow at Re ≈
15 000 and were able to measure turbulent properties very close to the bottom boundary. They
find that in this setup, where particles settle towards the bottom wall due to gravity, the dispersed
phase reduces velocity fluctuations and Reynolds shear stresses in the carrier phase, but only at
sufficiently large distances from the wall (z+ ≥ 10, where “+” refers to scaling with viscous wall
units). Very close to the wall (z+ < 10), Reynolds stresses are enhanced, and the crossover point is
attributed to momentum being exchanged between the two phases at near-wall ejection locations.
They perform a quadrant analysis and show that for z+ ≥ 10, the reduction in Reynolds stress comes
from a suppression of both ejection and sweep events (quadrants 2 and 4 in the u′-w′ plane), with
a larger reduction in the ejection strengths. They also compute time-weighted contributions from
each quadrant and show that the relative contribution from “coherent” motions to the total Reynolds
stress (quadrants 2 and 4) is substantially reduced relative to the “incoherent” motions (quadrants 1
and 3) for z+ ≥ 10.

Meanwhile, two-way coupled numerical simulations have provided significant insight into the
details of momentum exchange and subsequent turbulence modification in particle-laden turbulent
flows which experimental studies are unable to directly observe.13, 14 In the context of wall-bounded
flows, simulations with small, heavy particles, such as those performed by Li et al.10 and Zhao
et al.,15 generally exhibit reductions of the turbulent Reynolds stress. Mito and Hanratty16 show, for
a turbulent channel with surface entrainment/deposition (i.e., particles are adsorbed to and ejected
from the surface), that the momentum carried by the dispersed phase becomes a significant fraction
of the total stress at the expense of the carrier phase Reynolds stress. This would imply a reduction of
carrier phase turbulent fluxes due to the reduction of near-wall vortical activity. Similarly, Vreman17

uses numerical simulations to study particle-laden pipe flow, and shows that at very large mass
loadings, the carrier phase turbulent flux can be nearly eliminated and that all momentum transfer is
taken up by the dispersed phase. Furthermore, he shows that even with moderate mass loadings, the
Reynolds shear stress of the dispersed phase can be equal in magnitude to that of the carrier phase,
in agreement with the experiments of Caraman et al.18 and Borée and Caraman.19

Further highlighting the mechanistic insight which can be provided by two-way coupled sim-
ulations, the conditional averages computed by Dritselis and Vlachos20, 21 show that near-wall,
quasi-streamwise vortices are weakened and enlarged by the dispersed phase in a vertical channel.
A weakening of these motions, which is one of the emphases of the current study, provides a more
thorough understanding of Reynolds shear stress modifications near the wall. To this end, Zhao
et al.22 compute interphasial energy budgets between particles and the carrier phase in turbulent
channel flow to demonstrate extra energy dissipation due to the presence of inertial particles as well
as their ability to redistribute energy both directionally and spatially. Reductions in the wall-normal
Reynolds shear stress, which is highly dependent on particle inertia, is found to result from the
correlations of fluctuating particle forces with fluctuating carrier phase velocities.

It is clear that the dispersed and carrier phases exchange momentum and modify carrier phase
Reynolds shear stresses in wall-bounded turbulence, but it is not clear that the total momentum flux
remains constant. That is, does the combined wall-normal momentum transport from both phases
remain constant in these flows, and how does this change with increasing scale separation (i.e.,
Reynolds number)? More generally, how does the two-way coupling of small, heavy particles in a
turbulent wall-bounded flow change as the flow Reynolds number becomes asymptotically large?
This has direct relevance to many geophysical and industrial applications where flow length and/or
velocity scales can be very large while the dispersed phase remains small. We attempt to answer
these questions using an idealized formulation, which utilizes direct numerical simulations of planar
Couette flow two-way coupled with Lagrangian point-particles. We focus particularly on turbulent
near-wall structures and how their interactions with inertial particles change with increasing Reynolds
number, since only by understanding the effects of Reynolds number can we hope to predict effects
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at very large (i.e., geophysical) scales. It is important to note that owing to the simplified nature
of the point-particle approximation, conclusions drawn from the current analysis are only valid
for physical systems which meet the underlying conditions (small, heavy particles at low volume
concentrations), and one must take great care extrapolating results to systems which lie beyond this
range of validity. Under certain conditions, such as when particles exceed the Kolmogorov scale of
the flow, other numerical techniques, such as fully resolved dispersed phase simulations,23 must be
used instead.

II. PROBLEM FORMULATION

A. Governing equations

For this work, the standard Lagrangian point-particle approximation is used in conjunction with
direct numerical simulation (DNS) of the carrier phase. To represent the motion of a particle with a
density ρp much greater than that of the surrounding carrier phase fluid, ρp/ρ f �1, and a diameter
dp smaller than the smallest scales of the turbulent flow, dp/ηK �1 where ηK is the Kolmogorov
length scale, a simple force balance yields equations for the particle position xp, i and velocity vp,i :

dx p,i

dt
= vp,i , (1)

dvp,i

dt
= fi

m p
= (

1 + 0.15Re0.687
p

) 1

τp

(
u f,i − vp,i

)
, (2)

where mp is the particle mass and fi is the force acting on the particle. τp = ρpd2
p/18μ f is the

particle Stokes relaxation time, where μf is the dynamic viscosity of the carrier phase fluid. The
particle Reynolds number, Rep = |u f,i − vp,i |dp/ν f , is defined based on the difference between the
local fluid velocity uf, i interpolated to the particle location using sixth-order Lagrange interpolation
(modified at the wall to provide symmetric interpolation stencils in the vertical direction) and the
particle velocity. Equation (2) includes an empirical Reynolds number correction to the Stokes drag
over a solid sphere.24 By assuming that ρp/ρ f �1 and that dp/ηK �1, it follows that Rep is likely
small as well, which taken together imply that particle wake effects and distortions to the local
velocity field are small. Furthermore, other terms in the equation of motion of a solid sphere25 such
as the Basset history force and Faxén corrections are assumed negligible.

The carrier phase is solved using the incompressible Navier-Stokes equations:

∂u j

∂x j
= 0, (3)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ f

∂p

∂xi
+ ν f

∂2ui

∂x j∂x j
+ 1

ρ f
Fi . (4)

In this study, we are particularly concerned with the effect of particles on the surrounding turbulent
flow; their feedback onto the carrier phase is represented through Fi, a two-way coupling force.
Similar to other studies,26, 27 Fi is computed by projecting the force exerted from each individual
particle (−fi from Eq. (2)) onto the nodes of the surrounding carrier phase computational mesh; see
Richter and Sullivan4 for additional details.

B. Numerical implementation

Turbulent plane Couette flow develops between two infinitely parallel plates moving with equal
and opposite velocity U0/2. It is well-known28, 29 that large, quasi-coherent, streamwise structures
develop in this flow (hereafter referred to as rollers) which span the entire distance H between
the plates, have a spanwise wavelength of approximately 2H, and extend upwards of 15H in the
streamwise direction. These rollers are turbulent in nature and exist simultaneously with the more
commonly recognized quasi-streamwise vortices and hairpins of wall-bounded turbulence. As a
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result their removal (e.g., via a triple Reynolds decomposition) is not straightforward since they
behave as an inherent part of the overall flow.

In the context of DNS, large spanwise and streamwise domain extents are required to fully
capture the rollers and obtain resolved statistics.28, 29 In the present case, however, computational
constraints limit the domain to dimensions of [2πH, 2πH, H]. The present use of periodic boundary
conditions in the streamwise (x) and spanwise (y) directions therefore approximates these structures
as infinitely long (since they span the entire length of the domain) with a spanwise wavelength
slightly modified by spanwise confinement. Preliminary tests indicate that while certain quantities
such as two-point correlations are sensitive to a restricted domain size, the statistics of interest
to this study (e.g., the Reynolds stress) are not strongly influenced by spanwise or streamwise
extent, in agreement with the findings of Tsukahara et al.29 Furthermore, the aim of this study
is to describe the general role of inertial particles in vertical momentum transport within wall-
bounded, turbulent flows, and not to focus on Couette flow specifically. For this reason, the infinite
span of the midplane structures does not change our basic findings, and we regard the comparison
of laden and unladen planar Couette flows in this truncated domain as fully adequate for our
purposes.

A pseudospectral method is employed in the periodic directions (x and y), and second-order
finite differences are used for spatial discretization in the inhomogeneous, wall-normal z direction.
A low-storage, third-order Runge-Kutta (RK3) scheme is used to discretize the time domain.30

Incompressibility is enforced by solving a pressure Poisson equation to guarantee a divergence-free
velocity field at each RK stage. At the solid walls, the particles bounce elastically and no-slip is
enforced on the carrier phase. In terms of the centerline Kolmogorov length scale ηK, the coarsest
horizontal grid resolution among all cases is [
x/ηK, 
y/ηK] = [4.88, 2.44]. The vertical grid is
stretched across the height, and in terms of the viscous length, 
z+

wall (the spacing at the wall
normalized with viscous wall units) varies between 0.65 and 1.2 across all cases.

Additional details regarding the numerical method and code can be found in our previous work.4

In all simulations, the carrier phase velocity fields are initialized by a previously obtained unladen
case, while the particles are randomly and homogeneously distributed throughout the domain with
zero initial velocity. Statistics are obtained from horizontal and temporal averaging over a time of at
least tU0/H = 4000.

C. Simulation parameters

The overall goal of this study is to use a simplified numerical formulation to study fundamental
questions regarding wall-normal momentum transport in the presence of small inertial particles.
In order to both achieve large Reynolds numbers given limited computational resources as well
as simplify the physical system to the most basic particle-turbulence interactions, the simulations
performed in this study use the non-interacting point-particle approximation in the absence of
gravity. This fundamental understanding is critical for the large-scale prediction and modeling of
surface stresses in many geophysical and industrial systems. From the relatively simple numerical
implementation used presently, additional processes will be added one-by-one in the future to provide
a full physical understanding of each. The current work is therefore a first step in a larger process to
form a deep understanding which can be used to develop reliable parameterizations for large-scale,
two-way coupled modeling efforts.

By utilizing turbulent plane Couette flow, as opposed to the more common turbulent channel
flow, the simulations represent a system where wall-normal momentum transport is dominated by
the same ejection and sweep processes which occur in turbulent channels or boundary layers (to be
illustrated subsequently), but where the presence of rollers provides a unique length- and timescale
with which the particles can interact in addition to those provided by the near-wall turbulence.
Furthermore, the use of plane Couette flow provides a convenient framework for quantitatively and
unambiguously comparing momentum flux components since the total vertical momentum flux is
constant with height. Since we are ultimately not concerned with Couette flow specifically, but rather
the general interaction of shear-generated wall turbulence and small, heavy particles, the current
objective is to formulate a mechanistic understanding of the role of a dispersed phase on near-wall
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coherent structures and momentum transport, as well as how this changes with increasing Reynolds
number.

The parameters of interest in this study are the particle Stokes number, defined as the ratio of the
particle acceleration timescale to the Kolmogorov timescale at the channel centerline (StK = τ p/τK),
the particle mass concentration φm, defined as the ratio of the total particle mass in the domain to the
carrier phase mass, and the bulk Reynolds number Reb = HU0/ν f. It should be noted that τK varies
by a factor of roughly 5 between the centerline and wall in all cases.

By making the non-interacting point-particle approximation, we restrict comparison of the
simulation results to physical systems which meet the following conditions: (1) the particle diameters
are smaller than the smallest turbulence scales, (2) the particle Reynolds number remains small, thus
ensuring negligible distortion to the surrounding flow field, and (3) the volume fraction remains small
to ensure a low influence of particle-particle collisions. Furthermore, upon nondimensionalizing the
system of equations, the dimensional quantities ρp and dp do not appear independently (except
indirectly, since dp is used to compute Rep and determines the elastic collision distance at the wall).
Therefore, we choose to maintain a constant dp across all cases with the purpose of maintaining
an equal rebound distance at the wall. As demonstrated in Richter and Sullivan,4 if one were to
change dp between cases, the ability of particles to become stuck in the viscous sublayer changes
between cases, which modifies the number of particles in the bulk of the channel and thus indirectly
influences the turbulence modification and makes comparisons between cases ambiguous. In the
present model, this process of particles becoming stuck at the wall is exaggerated due to the lack of
a lifting force on the particle.

For all cases, therefore, we set dp = 200 μm (if the channel units are in m), which provides
d+

p ≈ 1 for all cases—sufficient for re-suspension into the bulk of the domain31 and well under the
Hinze estimate for maximum stable droplet diameter32 given the computed dissipation rate. With
dp set in this way, ρp is used as a free parameter to determine the particle Stokes number. Note that
these simulations are nearly equivalent to setting ρp = 1000 (e.g., water in air) and changing dp and
Np (the number of particles) to maintain the same StK and φm, while artificially forcing the particles
to collide with the wall at 100 μm instead of their radius. The only differences in this system would
be due to the empirical correction of Eq. (2), and tests have shown that this is minimal in terms of
the quantities discussed subsequently (Reynolds stresses, spectra, conditional averages). Thus, in
accordance with the point-particle approximation, the particle size is somewhat arbitrary and only
the dimensionless particle characteristics are considered.

Simulations at constant mass loading φm = 0.25 are performed for StK = [O(1), O(10), O(100)]
at three increasing bulk Reynolds numbers: Reb = [8100, 24000, 72000]. This corresponds to friction
Reynolds numbers of Reτ ≡ Huτ /2ν f ≈ [120, 320, 900], where uτ is the friction velocity defined
using the wall stress τw: uτ = √

τw/ρ f . These and other parameters are included in Table I. The
Reynolds number is increased by successively doubling the domain height H while simultaneously
increasing U0 such that the Kolmogorov length scale at the channel centerline remains roughly
constant (in dimensional units). Since ηK is computed a posteriori, its value varies slightly between
cases.

Finally, other simulation-based studies10, 33 have shown that particle collisions can have a sig-
nificant impact on particle fluctuation statistics and, in two-way coupled simulations, on carrier
phase turbulence statistics as well. The current particle model, however, does not incorporate par-
ticle collisions for the following reasons. As mentioned previously, our work is broadly motivated
by a fluid system involving water droplets in air. These droplets do not experience elastic colli-
sions as implemented in typical collision kernels, but instead undergo coalescence and breakup
during particle-particle interactions. Given the uncertainty involved with existing droplet coales-
cence/breakup models, as well as the computational effort required for large particle numbers, we
have opted to allow particles to occasionally overlap in space based on our choice of dp. In certain
regions within the flow this may perhaps lead to artificially high mass concentrations, but in the
context of water droplets may actually provide a crude approximation of the coalescence process.

The choices of ρp, dp, and Np outlined in Table I result in a maximum bulk particle volume
fraction of φV = 2.5e − 3, where it is reasonable to expect a low influence of particle collisions.
Indeed, by using standard kinetic theory, we have estimated that in worst-case conditions (run 10 near
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TABLE I. Summary of simulation parameters: Bulk Reynolds number Reb = HU0/νf; friction Reynolds number Reτ =
Huτ /2νf; grid resolution as number of grid points in each direction (Nx × Ny × Nz); bulk particle mass loading φm; bulk
particle volume fraction φV (ratio of total dispersed phase volume to carrier phase volume); particle Stokes number StK;
particle Stokes number based on wall units St+; ratio of particle density to fluid density ρp/ρf; particle diameter normalized by
Kolmogorov length dp/ηK; particle diameter normalized by viscous wall units d+

p ; number of particles Np; and Kolmogorov
timescale at z+ = 50 normalized by the unladen value.

Run Reb Reτ Nx × Ny × Nz φm φV StK St+ ρp/ρf dp/ηK d+
p Np

τK
τK ,un

|z+=50

1 8100 121 128 × 256 × 128 0.0 0.0 0 1
2 8100 122 128 × 256 × 128 0.25 2.5 × 10−3 1.2 8.2 100 0.46 1.2 1.5 × 106 1.14
3 8100 124 128 × 256 × 128 0.25 2.5 × 10−4 12 85 1000 0.46 1.2 1.5 × 105 1.09
4 8100 122 128 × 256 × 128 0.25 3.1 × 10−5 97 656 8000 0.47 1.2 1.9 × 104 1.07

5 24000 325 256 × 512 × 256 0.0 0.0 0 1
6 24000 317 256 × 512 × 256 0.25 2.5 × 10−3 1.1 14 100 0.45 1.6 1.2 × 107 1.24
7 24000 331 256 × 512 × 256 0.25 2.5 × 10−4 9.5 152 1000 0.41 1.7 1.2 × 106 1.14
8 24000 321 256 × 512 × 256 0.25 3.1 × 10−5 94 1146 8000 0.46 1.6 1.5 × 105 1.08

9 72000 917 512 × 1024 × 512 0.0 0.0 0 1
10 72000 848 512 × 1024 × 512 0.25 2.5 × 10−3 1.1 25 100 0.45 2.1 9.6 × 107 1.47
11 72000 869 512 × 1024 × 512 0.25 2.5 × 10−4 9.8 262 1000 0.42 2.2 9.6 × 106 1.33
12 72000 911 512 × 1024 × 512 0.25 3.1 × 10−5 83 2307 8000 0.43 2.3 1.2 × 106 1.07

the walls), the mean volume concentrations which develop would lead to an average time between
collisions on the order 10τ p. Thus, even in the regions of highest concentrations, the particles on
average can accelerate to the local velocity before a collision would have occurred, indicating that
two-way coupling effects may be similar to cases where particle-particle collisions are included.
As noted above, however, any potential violation of the non-interacting assumption can be avoided
within the point-particle framework by merely making dp smaller, enforcing a uniform collision
distance at the wall, and adjusting ρp and Np to maintain the mass fraction and Stokes numbers
of interest. This test has been performed for run 2 specifically where StK and φm are matched but
while choosing ρp and dp in a way that results in a volume fraction of φV = 3.1e − 5, and this
provides nearly identical results as the original case. Overall, therefore, the results presented herein
are thus generally applicable to any system where small, non-interacting particles are influencing
wall-bounded turbulent flow, as long as the particle Stokes number and mass fraction are similar.

III. MOMENTUM FLUX

The mean horizontal momentum budget is derived by taking a horizontal average of Eq. (4):

ρ f ν f
∂2 〈U 〉
∂z2

− ρ f
∂

∂z

〈
u′w′〉 + 〈Fx 〉 = 0. (5)

Throughout, averaging is denoted with 〈 · 〉 and fluctuating quantities are indicated as []′. As noted
previously, Fx refers to the horizontal feedback force resulting from the dispersed phase. For plane
Couette flow, one can define a total stress which is constant across the channel height:

τ (z) = τw = −ρ f
〈
u′w′〉 + ρ f ν f

∂ 〈U 〉
∂z

+
∫ z

0

〈
Fx (z∗)

〉
dz∗, (6)

where, as defined previously, τw is the stress at the wall. The total stress includes (in the order
of terms on the right hand side of Eq. (6)) the turbulent carrier phase flux which vanishes at the
wall, the viscous stress, and an additional stress due to the dispersed phase momentum flux. This
extra particle stress physically represents horizontal momentum being transferred in the wall-normal
direction by the average motion of the particles. In our previous work,4 profiles of these stresses
are presented and analyzed for Reb = 8100. These profiles are presented in Figure 1(a), along with
the profiles for the two additional Reynolds numbers in Figures 1(b) and 1(c). As a representative
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FIG. 1. (a)–(c) Profiles of the total (solid), turbulent (dashed), viscous (dotted), and particle (dotted-dashed) stresses over
the channel height for each particle Stokes number. Stress normalized by ρ f U 2

0 and z normalized by H. See legend for color
designations. Note that the x axis changes scale. (d) Normalized turbulent flux τturb/ρ f U 2

0 = − 〈
u′w′〉 /U 2

0 and total flux
τtotal/ρ f U 2

0 evaluated at z = H/2 as a function of Reb. Hollow diamonds refer to the total flux and filled circles refer to the
turbulent flux. Note that the abscissa is on a logarithmic scale.

measure of the turbulent flux modification, Figure 1(d) shows the normalized turbulent flux at the
channel mid-height τturb(H/2)/ρ f U 2

0 = − 〈
u′w′〉 |H/2/U 2

0 , along with the total flux, for all cases as
a function of Reb.

With increasing Reynolds number, the normalized turbulent stress at the centerline for the
uncoupled cases decreases monotonically, which is consistent, for example, with the decrease of
the skin friction coefficient of turbulent pipe flow or a turbulent boundary layer with increasing
Reynolds number (see, e.g., Ref. 34). The addition of particles, in all cases, then reduces the unladen
turbulent flux; in some cases by up to 30%. This reduction is largest for the StK = O(1) and least
for either the StK = O(10) or StK = O(100) particles, depending on Reb and vertical position. At the
lower two Reynolds numbers, it appears that the centerline turbulent flux is reduced least for the StK
= O(10) particles in Figure 1(d); however, this is not necessarily true when taking into consideration
the slight increase in the total flux for StK = O(10). As will be shown elsewhere (e.g., Table I, last
column), it is generally true that turbulence modification is maximized for StK = O(1) and decreases
monotonically with increasing Stokes number, particularly near the walls.
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Figure 1 indicates that the particles, over the entire range of Reynolds number probed, greatly
inhibit the amount of horizontal momentum transported in the wall-normal direction by carrier
phase turbulent motions, and that this reduction is offset (at least partially) by a rise in the particle
stress. At the lowest Reynolds number, the total amount of wall-normal momentum transfer remains
constant but partitioned between the flow turbulence and particle motion. With increasing Reynolds
number, however, the momentum carried by the particles saturates and, accompanied by a continued
reduction in the turbulent stress, the total stress decreases. This will be discussed in more detail in
Sec. V.

Reductions in carrier phase Reynolds stress have been observed in numerous experimental11, 12

and numerical10, 16, 17 studies. From the current simulations, as the Reynolds number increases this
effect becomes more pronounced, as measured by the gap between the unladen and laden cases.
Note that the minimal changes to the viscous flux indicate that the mean velocity profile experiences
only minor modifications (except at the wall in certain cases). We will return to this figure in Sec. V.

It is worthwhile to note that Hadinoto et al.35 perform vertically oriented pipe flow experiments to
specifically probe the effect of Reynolds number on particle-laden turbulence modification. Holding
the dispersed phase mass fraction constant, they find that the centerline difference between laden and
unladen turbulent streamwise fluctuations widens with increasing Re for two different particle sizes.
While their observed turbulence augmentation contrasts with the present turbulence suppression
(this discrepancy is likely due to the differences in particle size relative to the Kolmogorov scales
as well as the physical setup—gravity is acting in their streamwise direction), Hadinoto et al.35

demonstrate that the turbulence modifications found at low Re can be amplified by solely increasing
the bulk Reynolds number.

To better understand the mechanism through which particles modify the carrier phase turbulent
flux (observed in Figure 1), it is instructive to first determine the length scales over which the particles
exert their influence. All existing DNS studies of particle-laden turbulence (either homogeneous
isotropic or wall-bounded) are restricted to relatively low Reynolds numbers, and as a result have a
limited range of scales which can be resolved. Questions remain, therefore, on the scale range over
which particles modify the energy spectrum. Kulick et al.,7 for instance, present energy spectra from
turbulent channel flow experiments at Re = 13 800 which show distinct frequency bands where the
dispersed phase reduces energy content relative to the unladen case, while Tsuji et al.9 show spectral
energy attenuation at low frequencies but energy enhancement at high frequencies in turbulent pipe
flow with large (≥200 μm) particles.

One of the goals of the current study, therefore, is to identify the degree to which particles under
the point-particle approximation are “felt” by motions which exist on much larger time and length
scales than the individual particles. To visualize this, shear stress cospectra −E13(κ1) (i.e., the real
part of the Fourier-transformed correlation

〈
u′w′〉) multiplied by the streamwise wavenumber κ1 at

a height of z+ = 50 are shown for increasing Reynolds numbers in Figure 2. Shear stress cospectra
are plotted instead of streamwise energy spectra since we are ultimately concerned with wall-normal
momentum transport and the motions which cause it. Note that integrating the profiles in Figure 2
yields the nondimensional turbulent flux − 〈

u′w′〉 /U 2
0 at z+ = 50, and Figure 2 is plotted in a way

so that areas are proportional to this flux, i.e.,
∫

κ1 E13(κ1) d(ln κ1) = − 〈
u′w′〉.

The Couette rollers, which, as noted previously are numerically represented as infinitely long
due to streamwise periodicity, are manifested as increases in −E13/U 2

0 at the lowest wavenumbers.
This is prominent at the low-wavenumber end of Figures 2(b) and 2(c). At higher wavenumbers, a
maximum forms around κ1H ≈ 20. Since the area under the curve is proportional to −E13/U 2

0 , the
motions associated with this κ1H ≈ 20 peak clearly contribute most to the total integrated Reynolds
stress

〈
u′w′〉. More importantly, the wavelengths associated with this peak correspond to the size of

the conditional hairpins which will be discussed in Sec. IV B. For the case of Reb = 8100, the κ1H ≈
20 peak overlaps with the contribution from the Couette rollers, while at high Reb, it is the motions
corresponding to the peak (i.e., the near-wall turbulence) and not the Couette rollers themselves
which contribute most to the turbulent flux of momentum.

With the addition of particles, momentum flux almost universally decreases at all wavenumbers
(the exceptions being at the lowest few wavenumbers where the strength of the rollers dominates).
For Reb = 8100 in Figure 2(a), the decrease in the cospectra is relatively small, particularly at high
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FIG. 2. Shear stress cospectra multiplied by the streamwise wavenumber, −κ1 E13/U 2
0 , as a function of the normalized

streamwise wavenumber κ1H for (a) Reb = 8100, (b) Reb = 24 000, and (c) Reb = 72 000. Cospectra taken at a height of z+
= 50. See legend for line associations with particle Stokes number. Note that the ordinates differ in scale. Since the spectra
are multiplied by κ1 and the ordinate uses a linear scale, the area represents the contribution to − 〈

u′w′〉 /U 2
0 .

κ1H, with the StK = O(1) particles producing the largest decrease. For Reb = 24 000 in Figure 2(b),
the decrease in the cospectra is much more pronounced, again with StK = O(1) particles exhibiting
the strongest effect for much of the range of κ1H. Finally at Reb = 72 000 in Figure 2(c), the energy
content of the

〈
u′w′〉 correlation is further damped by the presence of the dispersed phase.

No “crossover” wavenumber is found at high wavenumbers, above which energy content is
augmented by the dispersed phase—behavior seen in a wide variety of experimental and numerical
studies for one-dimensional energy spectra.17, 36–38 Instead, Figure 2 indicates that particles under
the point-particle approximation, depending on their inertia, inhibit turbulent motions across nearly
the entire range of length and timescales (with the exception of the midplane rollers). This universal
reduction in turbulent energy is in qualitative agreement with the two-way coupled channel flow
simulations of Zhao et al.22 For the highest wavenumbers, this effect is maximized when StK = O(1),
while below κ1H ≈ 10 the StK = O(10) particles provide nearly the same (or larger) decrease. This
dependence on StK of the ranges of the cospectra which are most damped provides clear evidence
that the particles tend to inhibit motions according to their own inertial timescale. This suggests that
at even higher Reynolds numbers, the wavenumber bands of Kulick et al.7 may be observed.
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FIG. 3. Running cospectra integral given by Eq. (7) as a function of normalized streamwise wavenumber κ1ηK. (a) Unladen
case; (b) StK = O(1) particles; (c) StK = O(10) particles; and (d) StK = O(100) particles. Vertical black lines show the
wavenumber where the integral reaches 80% of the total turbulent flux

〈
u′w′〉.

It is important to note that the momentum is being transferred by increasingly higher-
wavenumber motions as Reb is increasing. Defining the running integral of the shear stress cospectra
as

S(κ̂1) = − 1

〈u′w′〉
∫ κ̂1

0
E13(κ̂∗

1 )d κ̂∗
1 , (7)

where the wavenumber κ̂1 = κ1ηK has been normalized by the Kolmogorov length (which is roughly
equal across all simulations), then Figure 3 shows that the motions responsible for turbulent shear
stress are shifting to higher wavenumbers at z+ = 50. This shift then allows small particles to more
efficiently modify total turbulent transfer.

The shift of cospectra content to higher wavenumbers with increasing Reb is true both for
the uncoupled case (Figure 3(a)) as well as for the particle-laden cases (Figures 3(b)–3(d)). The
vertical black lines illustrate the wavenumber at which the integrated cospectra reach 80% of the
total turbulent stress

〈
u′w′〉; for the particle-laden cases at a given Reb, this wavenumber is shifted

to the left. If all wavenumbers were affected equally by the presence of the particles, this location
would remain unchanged. Instead, while Figure 2 shows that the turbulent flux at nearly all scales
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is decreased with the addition of particles (for any Reb), Figure 3 demonstrates that the decrease is
preferentially shifted to high wavenumbers, particularly when StK = O(1). The shift of momentum
flux towards higher wavenumber with increasing Reb and the resulting preferential damping of high-
wavenumber motions by particles partially explains the continued and increasing influence of the
dispersed phase with increasing Reynolds number, and in Sec. IV, a detailed analysis of near-wall
coherent structures will be used to further explore this effect.

IV. NEAR-WALL COHERENT STRUCTURES

A. Instantaneous structures

Here we use instantaneous fields to gauge the effect of the dispersed phase on near-wall coherent
structures. To achieve this, we compute |λci|, the magnitude of the imaginary part of the complex
velocity gradient eigenvalue (of the carrier phase) at every grid point throughout the domain. This
quantity has been used in previous studies,39 including our own,4 to identify regions of swirling
motion (or vortices) near the wall. We use the presence of these near-wall coherent motions as
evidence of the turbulent flux

〈
u′w′〉.

As a representative example, Figure 4 shows an instantaneous snapshot of surfaces of
|λci|/(U0/H) = 2.5 for both the unladen case and for a laden case with StK = O(1) at Reb = 24 000
(Run 6). Qualitatively, the swirling activity near the wall is reduced by the presence of particles,
and the same is generally true for other Reynolds numbers and particle Stokes numbers. The large
streaks of blue and red extending across the entire domain in the streamwise direction (prominent in
the laden case) show the imprint at the wall of the large-scale rollers. Superimposed on these broad
regions are the smaller-scale low- and high-speed streaks which characterize wall-bounded turbulent
flows, spaced roughly 
y+ ≈ 100 apart. Recall that these smaller-scale motions are responsible for
the bulk of the turbulent transfer with increasing Reb as noted in Figures 2 and 3.

Probability density functions (PDFs) of the swirling strength |λci|/(U0/H) over the entire do-
main are plotted in Figure 5. First, it is clear that for the unladen cases, the range of normalized
swirling strength increases with Reynolds number, and that beyond a certain strength the PDF has
an exponential tail. In this exponential region, the likelihood of finding swirling motions of a given
strength decreases significantly with the addition of particles. Furthermore, with increasing |λci|, the
gap between the unladen case and each laden case increases significantly (note the ordinate is on a
logarithmic scale). As measured by this gap between the unladen and laden probabilities, flows with
higher Reynolds numbers experience larger reductions in high-strength swirling motions.

Particles with StK = O(1) are most effective at reducing the number and strength of the near-
wall coherent motions, with the effectiveness reducing as StK increases. This is true at all Reb. As
discussed in detail in our previous work,4 this maximization at StK = O(1) is due to preferential
concentration, which occurs when particles centrifuge out of regions of high vorticity and collect
in regions of high strain rate. When the time scale of the particle is on the same order as that of
the turbulence (i.e., when StK ≈ 1), preferential concentration is maximized.40 When the StK =
O(1) particles collect in these regions, local concentrations can be many times higher than the bulk
concentration (φm = 0.25), and can therefore lead to enhanced turbulence attenuation compared to
particles at the same φm but different StK.

By contrast, the StK = O(10) particles cannot respond as quickly to near-surface turbulent
motions, and therefore do not collect in the same regions as the StK = O(1) particles. Instead, their
inertial timescale is of the same order as the rotation rate of the Couette rollers,4 which causes these
more massive particles to collect in the large-scale low-speed streaks (i.e., blue streaks in Figure 4)
resulting from the rollers. Thus the influence of StK = O(10) particles on |λci| can remain strong, but
not with the same efficiency as the StK = O(1) particles. The StK = O(100) particles, on the other
hand, display almost no preferential concentration and exhibit the least degree of modification to
swirling motions within the flow. These differences will be discussed further in Sec. IV B.

Similar to the shear stress spectra of Figure 2, the influence of the particles is not confined to a
small range of length or time scales, as Figure 5 illustrates. When the scale separation (i.e., Reynolds
number) increases, swirling motions across the entire range of timescales |λci|−1 are influenced; an
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FIG. 4. Instantaneous snapshot for Reb = 24 000. Horizontal slice at z+ = 15 shows contours of normalized streamwise
velocity fluctuation u′/U0 and gray structures are iso-surfaces of |λci|/(U0/H) = 2.5. Compares (a) the unladen case with (b)
StK = O(1). The schematic on the left illustrates the Couette cell layout and coordinate system.

effect which becomes more pronounced with increasing Reb. We now focus on mechanisms which
could lead to this widening of the range of scales over which particles are felt.

B. Conditionally averaged structures

Balachandar and Eaton41 note in their Sec. 6.2 several mechanisms through which particles
can modify turbulence. One is “increased dissipation arising from particle drag,” which for small
particles (dp/ηK �1) typically results in turbulence attenuation.8, 42 Previously,4 we identified the
collective effect of local, particle-scale momentum exchange (i.e., drag on the particle surface) as the
primary mechanism through which the dispersed phase damps motions responsible for bulk wall-
normal momentum transfer, in agreement with the above quoted mechanism listed by Balachandar
and Eaton.41 This small-scale attenuation of turbulent is evident, for example, in the increase of
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FIG. 5. Probably density function of the normalized swirling strength |λci|/(U0/H) for (a) Reb = 8100, (b) Reb = 24 000,
and (c) Reb = 72 000. Each plot contains the probability density function for each particle Stokes number—see legend.

τK near the wall after the addition of particles (last column of Table I). At this point, however,
we propose an additional mechanism which helps explain the particles’ continued influence over an
increasingly broad range of scales which exist as Reb is increased in the current computations. Rather
than having the same direct dissipative effect on both large- and small-scale motions, we suggest
that by inhibiting the smallest motions near the wall, particles have an up-scale influence which
disrupts the formation and evolution of hairpin packets. Individual hairpins have been identified as
coherent, near-wall structures which, in an average sense, result in the “bursting” and “sweeping”
events that provide the bulk of wall-normal turbulent flux of momentum.43 As they grow and join to
form packets, they proliferate throughout a turbulent boundary layer and span length scales ranging
up to the boundary layer height.44 Their presence has been observed not only in laboratory-scale
flows, but in atmospheric-scale flows as well.45 In this section, conditional averaging is used to
investigate the effects of particles on the hairpin structures which cause these turbulent events.

One method of identifying coherent structures in a turbulent flow, in this case hairpin vortices,
is by computing conditionally averaged fields. That is, one constructs an average field based on a
specified event of interest at a specified location in the flow. A common approach to identifying
the structures associated with near-wall bursting and sweeping events is to define the event using
velocity fluctuations corresponding to the second or fourth quadrants of the u′-w′ plane.39 We adopt
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this procedure for identifying how the presence of particles changes these structures, as well as how
this effect changes with Reynolds number. Note that while this procedure can provide details of
the flow field conditioned on turbulent sweep and ejection events, it cannot detect changes in the
frequency of such events in the flow.

To perform the conditional averaging we use linear stochastic estimation (LSE), a technique
which allows computing approximations of conditional averages based on unconditional correlation
data.46 This is opposed to computing the conditional averages via brute-force, where each sample
must be tested against the specified event, which is time-consuming and also results in undersampling
depending on the complexity of the event and likelihood of finding such an exact event in the field.
LSE has been used in many different applications, particularly in educing coherent structures from
turbulent flows, and despite being a linear approximation to the conditional average it has been
shown in many cases to be an excellent representation of the true conditional average.47

LSE theory is described in detail in other publications,46 so only a brief description in the
context of the current problem will be provided here. In this description, vectors will be identified
either with boldface or index notation when summations are present. Given the event E(x∗, t) at
event location x∗, the conditional average of a zero-mean (i.e., fluctuating) quantity y at location x is
denoted 〈y|E〉. Each element of E represents a specific event, and the elements of y are the fields of
interest based on the event. In the current study, E is based on turbulent ejection events near the wall
and y includes the velocity field as well as both the dispersed phase mass concentration field and
the dispersed phase feedback force field so that individual hairpins and the corresponding particle
feedbacks can be analyzed in detail.

LSE approximates the linearly estimated field ŷ(x) as

ŷi (x) = Li j (x, x∗)E j (x∗), (8)

where Lij provides, in a least-squares sense, the best linear approximation to the conditional average
〈y|E〉. The rows of Lij must be solved from a linear system which includes unconditional correlations
between events: 〈

E j El
〉
Li j = 〈yi El〉 . (9)

The conditional field ŷ we are presently concerned with contains velocity fluctuations, the
fluctuating particle mass concentration, and the fluctuating feedback forces:

ŷ(x) = [
û′, v̂′, ŵ′, ĉ′, F̂ ′

x , F̂ ′
y, F̂ ′

z
]
, (10)

where F ′
i is the fluctuating component of Fi given in Eq. (4) and c′ is the fluctuating mass

concentration of the dispersed phase. Following previous studies,39 the event E(x∗) is chosen as
E = [

u′
m, 0, w′

m

]
. Of interest are ejection events, otherwise known as Q2 events, which occur when

the streamwise velocity fluctuation u′ is negative and the wall-normal velocity fluctuation w′ is
positive (i.e., ejection of low-momentum fluid away from the wall). The specific event magnitudes
u′

m and w′
m are chosen to be those which maximize the contribution to the turbulent flux

〈
u′w′〉 at

the specified event height. Mathematically these are the values which lead to the largest product
P(u′

m, w′
m)u′

mw′
m where P(u′

m, w′
m) is a joint probability distribution. By setting spanwise velocity

fluctuations to zero in E, we focus only on conditional fields which are spanwise-symmetric.
Figures 6–8 show various conditional fields for the three Reynolds numbers. The event location

is z+ = 50. Each figure contains the unladen case (top row), the case when StK = O(1) (middle row),
and the case when StK = O(10) (bottom row). In all cases, the gray structures represent constant
surfaces where the squared swirling strength of the conditional velocity field, |λci|2, is equal to 15%
of the maximum value of the unladen case at the same Reynolds number. For event heights chosen
within the range 30 < z+ < 80, the conditional structures and their modification due to the addition
of particles are very similar at all Reynolds numbers.

Focusing for the moment on the unladen cases (top rows), the contours show conditionally
averaged streamwise (left) and wall-normal (right) velocity fluctuations at planes of z+ = 8 and
y+ = 0, respectively. The canonical hairpin structure seen in previous channel and boundary-layer
flows43 is apparent. Between the counter-rotating legs of the hairpin is an upwelling region of low-

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.74.161.78 On: Wed, 05 Nov 2014 19:23:53



103304-15 D. H. Richter and P. P. Sullivan Phys. Fluids 26, 103304 (2014)

FIG. 6. Conditional structures based on E = [
u′

m , 0, w′
m

]
for Reb = 8100. Top row corresponds to unladen case, middle

row corresponds to StK = O(1), and bottom row corresponds to StK = O(10). Horizontal slice in the left column is located
at z+ = 8 and the vertical slice in the right column is located at y+ = 0 (denoted as the black, transparent surface in the
left column). For the unladen case, the contours represent (a) conditional streamwise velocity fluctuations

〈
u′|E〉

/U0 and (b)
conditional wall-normal velocity fluctuations

〈
w′|E〉

/U0. For particle laden cases, the solid contours represent ((c) and (e))
conditional fluctuating concentration

〈
c′|E〉

/c0 and ((d) and (f)) conditional particle feedback force in the vertical direction〈
F ′

z |E
〉
/(U 2

0 H ). Line contours in (d) and (f) represent levels of conditional particle concentration fluctuations
〈
c′|E〉

/c0.

velocity fluid, and the fluctuating wall-normal velocity is maximized at the chosen event height.
Thus, the Q2-based conditional hairpin is responsible for pulling low-momentum fluid away from
the wall and redirecting it upwards, resulting in a negative contribution to the Reynolds stress. With
increasing Reynolds number, the shape of the conditional eddy is relatively unchanged, though its
streamwise extent is compressed for Reb = 72 000 when normalized by viscous wall units (consistent
with Figure 3).

Figure 6 shows the evolution of the Reb = 8100 conditional eddy as the particle Stokes number
increases. In Figures 6(a)–6(f), the horizontal slices (left column) show contours of the conditionally
averaged fluctuating particle mass concentration

〈
c′|E〉

/c0 at z+ = 8 (where c0 is the bulk con-
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FIG. 7. Same as Figure 6 but for Reb = 24 000.

centration). In the figures on the right, the slice at y+ = 0 contains contours which illustrate the
conditionally averaged vertical force

〈
F ′

z |E
〉
/
(
U 2

0 /H
)

felt by the fluid due to the dispersed phase,
and lines which show contours of

〈
c′|E〉

/c0.
The figures show that the particle concentration is, on average, higher in the upwelling region

between the legs of the hairpin compared to the horizontally averaged concentration. Figure 6(c)
shows this clearly for StK = O(1), where the highest concentrations in the z+ = 8 horizontal plane
exist between the legs of the hairpin. In the vertical direction, Figure 6(d) shows that high fluctuating
particle concentrations are elevated between the hairpin legs, but upstream of the conditional eddy,
where no upwelling occurs, the increased mean particle concentrations do not penetrate upwards. At
the event location [x+, y+, z+] = [0, 0, 50], where the wall-normal fluctuations are maximized, the
contours in Figure 6(d) show that the dispersed phase pushes down against the vertically directed
Q2 event. This resistance to the vertical ejection is largely localized to the region above and below
where the hairpin legs meet the head.
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FIG. 8. Same as Figure 6 but for Reb = 72 000.

For StK = O(10), however, the picture changes dramatically. The distribution of mean particle
mass concentration becomes nearly invariant in the x direction. This indicates that the particle orga-
nization is no longer primarily due to the near-wall turbulent ejection events. This is consistent with
our previous findings,4 where particles with StK = O(10) were found to preferentially concentrate in
large regions associated with the large Couette rollers. This is in contrast to the StK = O(1) particles,
which accumulate in smaller-scale regions associated with near-wall streaks, which themselves are
signatures of hairpin structures. The vertical distribution of StK = O(10) particles illustrates the
same point: the presence of the conditional eddy only weakly influences the upward movement of
dispersed phase mass, as the contour lines are flatter in Figure 6(f) than in Figure 6(d). Since the more
inertial particles are unable to collect between the legs of the hairpin as effectively, their mechanical
feedback, as measured by their vertical feedback force, is diminished by nearly a factor of 2 when
compared to the StK = O(1) particles.

With increasing Reynolds number, Figures 7 and 8 show that this general behavior remains the
same. For an event height of z+ = 50, the StK = O(1) particles preferentially concentrate in the
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region between the hairpin legs, while causing a significant downward force on the carrier phase
centered at the location of the ejection event. Once again, more inertial particles (StK = O(10)) are
unable to collect on scales associated with the hairpin and therefore result in a lower-magnitude
feedback force—a phenomenon which is even stronger at StK = O(100) (not shown).

V. DISCUSSION

A. Effects of StK

For the lowest Reynolds number, the effects of the particle Stokes number is described in detail
in our previous work.4 Each Stokes number probed responds to different timescales within the flow:
StK = O(1) particles have a timescale near the smallest turbulent motions, and thus preferentially
concentrate in regions associated with these motions; StK = O(10) particles have an inertial timescale
near the rotation rate of the Couette rollers, and thus preferentially concentrate in the corresponding
large-scale convergence regions associated with these motions; and StK = O(100) particles have
an inertial timescale which is larger than any available flow timescale, causing them to maintain a
nearly homogeneous concentration throughout a given horizontal slice in the domain.

With increasing Reynolds number, this behavior continues, and the momentum flux modification
observed in each case is the end result of the particles’ ability to concentrate in regions associated
with turbulent ejections and sweeps. Figures 6(c) and 6(d), 7(c) and 7(d), and 8(c) and 8(d) show that
StK = O(1) particles are found to accumulate precisely in regions where they, in being accelerated
upwards, provide a force which opposes the motion of the conditional hairpin. The weakened
hairpin then cannot vertically transport as much carrier phase momentum through ejection and sweep
events.

For StK = O(10), the picture is slightly more complex since these particles preferentially
concentrate in regions associated with the Couette rollers. Figures 6(e) and 6(f), 7(e) and 7(f),
and 8(e) and 8(f) show that the conditionally averaged fluctuation field is nearly invariant in the
streamwise direction when StK = O(10). This is in contrast to the StK = O(1) particles, which show
regions of highest concentration only in the vicinity of the hairpin head. This is perhaps most obvious
when comparing the contour lines in panels (d) and (f) of Figures 6–8. This streamwise invariance
of the StK = O(10) particle concentration demonstrates that the locations of these particles are not
strongly influenced by the relatively small hairpin vortex, which is due to the mismatch in timescales
between the hairpin and the particle. At the same time, the conditionally averaged concentration
up- and downstream of the hairpin is found to exceed the bulk concentration, implying that the
Q2 events tend to occur in regions otherwise occupied by StK = O(10) particles—the near-wall
convergence zones of the Couette rollers (blue streaks in Figure 4). Therefore, while the transport
of the StK = O(10) particles is strongly influenced by the strength and location of the rollers, they
do not exhibit the same degree of resistance to Q2 events since they still cannot accumulate in the
small-scale regions associated with these motions. Their influence on momentum flux is felt on
larger scale-motions in the flow which do not dominate the total momentum transfer (see Figures 2
and 3).

Although not shown for sake of brevity, the hairpins associated with StK = O(100) motions look
qualitatively similar to the unladen cases and no spatial patterns exist for

〈
c′|E〉

/c0. This indicates
that no preferential concentration occurs, and as a result, the peak conditionally averaged feedback
force is an order of magnitude smaller than that provided by StK = O(1) particles.

B. Effects of Reb

As the Reynolds number increases, the impact which the particles have on the conditional
eddies becomes more obvious. At Reb = 72 000, the strength of the conditional hairpin is diminished
substantially, particularly with the addition of particles of StK = O(1) (as seen in Figure 8(c)). When
normalized by channel units, the maximum swirling strength of the conditional eddy increases with
Reb, but is accompanied by a corresponding increase in the resistance force due to the upward
ejection of particles.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.74.161.78 On: Wed, 05 Nov 2014 19:23:53



103304-19 D. H. Richter and P. P. Sullivan Phys. Fluids 26, 103304 (2014)

Reb

m
ax

(|
λ ci

|/(
U

0/
H

))

6000 28000 50000 72000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Unladen
StK = O(1)
StK = O(10)
StK = O(100)

Reb

%
 d

ec
re

as
e 

fr
o

m
 u

n
la

d
en

6000 28000 50000 72000
0

10

20

30

40

50

StK = O(1)
StK = O(10)
StK = O(100)

(a) (b)

FIG. 9. (a) The maximum normalized swirling strength max(|λci|/(U0/H)) of the conditionally averaged velocity field 〈u|E〉
as a function of Reb. (b) The percent drop of max(|λci|/(U0/H)) from the unladen value. Legends contain symbol information.
Note that the horizontal axes are on a logarithmic scale.

Figure 9(a) shows the maximum value of |λci| for each case as a function of Reynolds number.
This maximum value of |λci| is typically located in the curved “head” region of the conditional
eddy, and Figure 9(a) clearly shows that the swirling strength in this region is diminished from its
unladen value when particles are added. What is surprising is that the capacity of particles to weaken
the conditional eddies associated with Q2 events increases significantly with Reynolds number.
Figure 9(b) shows the percent reduction of max (|λci |) compared to the unladen case for each of
the particle Stokes numbers. Reductions in max (|λci |) reach nearly 50% for StK = O(1) at Reb =
72 000. At all Reb, the StK = O(100) particles provide the least resistance to the Q2 motions since
they are most unable to preferentially concentrate in the appropriate regions, while at Reb ≥ 24 000
the StK = O(1) particles provide the highest-magnitude weakening effect.

The ability of particles to weaken the conditional Q2 event is consistent with similar work done
by Dritselis and Vlachos20, 21 in turbulent channel flow, where they find that conditionally averaged
quasi-streamwise vortices near the wall are weakened in strength with the presence of inertial
particles. Similar to what is seen here, they point out that the particles provide a counter-torque
to the rotational sense of their conditional quasi-streamwise vortex, always resisting its rotational
motion and thus diminishing its strength. In this sense, the same general phenomenon has also been
observed for turbulent wall-bounded flow containing polymer additives. Kim et al.48 perform a very
similar analysis to that presented here, where polymer feedback forces are seen to provide elastic
(instead of inertial) resistance to the conditional eddies responsible for Q2 events.

When viewing Figure 9 in light of the behavior of Figures 1 and 2, we see that the effects of
the particles are not only influencing scales well separated from their physical size, but that their
turbulent-flux-inhibiting behavior increases with Reb. We therefore speculate that the particles mod-
ify the underlying mechanism through which momentum is transferred in wall-bounded turbulence,
particularly at high Reynolds number.

Zhou et al.39 show in their Figure 11 that only near-wall conditional eddies of sufficient strength
can regenerate new hairpin vortices—a mechanism through which coherent turbulent structures
multiply and grow throughout the development of near-wall turbulence. If the particles disrupt this
regeneration mechanism by damping out the seed structures which initiate the hairpin proliferation
process, the particles’ effect will be felt at all scales. In this sense, wall-normal turbulent fluxes in
high Reynolds number flows would be impacted more than those in low Reynolds number flow,
since the cumulative contribution from the large- and small-scale motions is larger for higher Re.
This idea is consistent with the results of Figures 1 and 9.
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To provide further evidence of this effect we return to Figure 1, which shows vertical profiles of
each component of the stress defined in Eq. (6). Figure 1(a) shows that at Reb = 8100, the decrease
in turbulent flux is compensated by an increase in the particle stress. This was discussed in Richter
and Sullivan4 and illustrates momentum conservation between the carrier and dispersed phases.
Momentum transported by turbulent motions is instead transported by individual particles, and the
total stress remains nearly constant at all StK. The same can be said at Reb = 24 000 (Figure 1(b)),
where the turbulent stress decreases across the entire domain height (maximized at StK = O(1) as
discussed previously) but is compensated by an increase in the particle stress. Again this leads to
a total stress which does not vary significantly with particle Stokes number. When Reb = 72 000
(Figure 1(c)), however, the turbulent stress again decreases, but now the increase in particle stress
does not completely compensate for this loss. Instead, the total stress decreases, indicating that the
total amount of momentum being transferred across the Couette cell is now less than that for the
unladen case.

At lower Reb, the overall behavior can be described as momentum conservation between the
phases, where the damping of turbulent fluctuations by individual particles translates into momentum
gained by the dispersed phase. The separation between the largest and smallest scales is small, so
particles directly interact and exchange momentum with nearly all scales which are available in
the flow. At high Reb, however, this simple explanation does not hold. Our proposed mechanism
would suggest that at higher Reb, the particles continue to exchange momentum with motions at their
immediate spatial scales (i.e., the smallest motions of turbulence), but that this interaction inhibits
larger structures from ever forming, manifesting itself as a decrease in the total stress across the
system. This is enhanced by the fact that the scales associated with the turbulent flux shift to high
wavenumbers with increases in Reb (cf. Figure 3). The process by which particles disrupt hairpin
regeneration also explains the behavior in Figures 2 and 5, where the dispersed phase alters motions
well beyond their spatial and temporal time scales. Therefore as the Reynolds number approaches
the truly “high” limit (e.g., geophysical flows), where the energy spectra and shear stress cospectra
become independent of Reb at scales corresponding to the inertial subrange and below, we speculate
that the influence of particles would continue to be felt since the turbulence cascade and the motions
responsible for it have been modified.

VI. CONCLUSIONS

The ability of particles to influence momentum transfer in turbulent Couette flow, particularly
as the Reynolds number is increased, is studied using a combination of DNS and Lagrangian point-
particle tracking. Our previous work4 shows that inertial particles reduce near-wall swirling motions,
which in turn results in a reduction of the turbulent Reynolds stress. Here, we perform conditional
averaging via linear stochastic estimation46 to better understand the physical mechanisms responsible
for the observed reduction in turbulent momentum flux with the addition of particles. Several key
observations are made:

1. The number and strength of instantaneous near-wall swirling motions, as measured by |λci|, is
diminished significantly with the addition of particles.

2. Particles whose Stokes numbers are O(1) are most able to preferentially concentrate on scales
associated with the conditional hairpin structures corresponding to a Q2 event. These StK =
O(1) particles therefore result in the largest feedback force between the carrier and dispersed
phases, opposing the ejection motion caused by the conditional eddy and weakening the eddy
strength.

3. With increasing Reynolds number, the particle influence on the conditional hairpin strength
increases, as measured by the deviation from the unladen conditional eddy strength. Again,
StK = O(1) particles exhibit the largest effect.

We therefore propose that particles, despite interacting with the carrier phase on scales on
the order of their diameter (which is assumed smaller than the Kolmogorov length), can influence
turbulent transport at scales much larger than their size by disrupting the regeneration process of
near-wall turbulent motions—a process made more efficient by the concentration of flux-producing
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scales towards high wavenumbers observed with increasing Reynolds number. Furthermore, this
proposed mechanism highlights a need for better understanding the direct, two-way interaction
between turbulent motions and particle clusters (which can exist at multiple spatial scales, unlike
individual particles). This interaction remains a current target of continuing analysis.
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